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Abstract. In this work P theorem by Hadwiger that gives necessary and sufficient conditions 
for a vector star to be projected from an orthonormal basis in a higher-dimensional vector 
space is generalized. The generalized theorem is used to explore the lattices in higher- 
dimensional spaces from which (via ‘cut’ or ’cut and projection’) non-periodic structures 
are obtained. 

1. Introduction 

Recently a new class of materials was discovered that are characterized by icosahedral 
long-range orientational order and quasiperiodic long-range translational order 
(Shechtman et a1 1984). Shortly afterwards other quasiperiodic structures with 
decagonal orientational order were found (Bendersky 1985, Chattopadhyay et a/ 1985) 
and there are claims that octagonal and dodecagonal phases also exist (Wang er a/ 
1987, Ishimas et a/ 1985). It was appreciated from the very beginning that a 
quasiperiodic structure (i.e. one having Bragg peaks indexing according to more than 
three rationally independent reciprocal vectors) can be regarded as a ‘cut’ through a 
periodic structure lying in a space of more than three dimensions (Bak 1985). At the 
same time other less general approaches were pursued leading tn the so-called cut- 
projection scheme (Kalugin et a1 1985, Elser 1985, Duneau and Katz 1985) and to the 
Grid methods (de Bruijn 1981, Kramer and Neri 1984, Socolar et a1 1985, Socolar and 
Steinhardt 1986). 

Since most of the theoretical work has dealt exclusively with the icosahedral phases, 
and since these phases can be regarded as cuts through cubic (isometric) lattices in 
six dimensions; very little attention has been paid to those cases in which the structures 
cannot be considered as cuts from a cubic hyperlattice. There are claims, for instance, 
that the decagonal phases require a hypertetragonal lattice in six dimensions (Mandal 
and Lele 1989), and it is possible that new phases, still undiscovered, will call for 
various non-isometric lattices. 

The purpose of this paper is to explore the conditions under which a set of M 
vectors (‘star’) can be regarded as a projection of the M basic vectors that span a 
lattice in M-dimensional space. In order to achieve this, a generalization of a theorem 
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due to Hadwiger (Hadwiger 1940, Coxeter 1973, Gancedo et a/ 1988, Torres et al  
1989) is presented. In section 2 the cut method is briefly reviewed in order to set the 
stage for the generalization of the Hadwiger theorem. In section 3 the main theorems 
are proved. In section 4 some practical and computational aspects are discussed which 
are applied in section 5 to several cases of interest. In section 6 the results are discussed. 

2. The cut method 

The general quasiperiodic function can be regarded as a ‘cut’ of a periodic function 
in a higher-dimensional space (Bak 1985). This can be seen as follows. Let E be a 
Euclidean space which we will identify with the ‘physical’ space; consequently, dim( E)  
will be 3, though for illustrative purposes it will be taken sometimes as 2 or 1. Let 
{ai):, be a subset of E such that ( a )  M is greater than dim(€), ( b )  {a,} spans E and 
( c )  the set {aj] is rationally independent. Then we can see that a quasiperiodic function 
will have the form 

(1) f ( r ) = x  A h , h 2 , , , h M  expP?ii(h,a,+h2a2+. . . + h ~ a ~ ) r l  
where hi E Z and the sum is over all such integers. A quasiperiodic function is, then, 
a function having a spectrum that consists of ’Bragg’ peaks at positions given by 

e =  h,a ,+h2a2+.  . .+hMaM. (2) 
Now it is always possible to embed E in a Euclidean space V, of dimension M, 

such that if E’ is the orthogonal complement to E then V =  E +E’ and such that is 
has a basis { e , ] Z ,  that decomposes (projects) as e , = a j + a f  for some a t e E l .  Con- 
sequently, the function defined in V by 

F ( R ) = x  Ah,h,h,  e x p [ 2 4 h l e 1 + h 2 e 2 + .  . . + ~ M ~ M ) R ]  (3) 
is periodic in V and has the property that, when restricted to E, F (  r) = f (  r), so f can 
be said to be a ‘cut’ of the periodic function F. The cut (hyper)plane is the space E 
itself. The function F is periodic over the lattice spanned by the M vectors reciprocal 
to the set {ei}. For this reason it is of practical and conceptual interest to find, given 
{a(} and E, the corresponding V and {et}. 

When the lattice in V is hypercubic with lattice parameter equal to unity, the set 
{e!] satisfies e , a e j  = 8, and the projected ai are said to form a normalized eutactic star 
(Coxeter 1973). The conditions under which a given star {ai] is eutactic are given by 
a theorem due to Hadwiger (Hadwiger 1940, Coexter 1973, Gancedo er al  1988, Torres 
et al  1989). which is given below. 

Hadwiger theorem. A star [ai];”=, is normalized eutactic if and only if for any PE  E 
P =  T ( P )  

where T is defined by 
M 

T ( P ) =  1 (Poa,)a, .  (4) 
i=, 

It is the purpose of this paper to generalize the Hadwiger theorem to cover the 
case of non-isometric (cubic) lattices and to explore some other applications, e.g. to 
quasicrystalline structures such as the Penrose tiling in 2~ and the T phases (decagonal 
quasicrystals). 
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3. Generalized Hadwiger theorem 

As in the preceding section, we consider the M-dimensional Euclidean space V =  
E + E' equipped with the basis (e,];"=,.  If ( e ? ] : ,  is the basis of V reciprocal to (e,);"=,, 
and defined by e?. ej = 6, ( i ,  j = 1 . . . M), then the relationship between real and 
reciprocal lattices is given by the linear transformation e? = .ZFI g$ej, where g-' = 
(ga) = (etoe:) is the inverse of the metric tensor g = (g, )  = ( e ,oe j ) .  

Let II: V +  E be the orthogonal projector of V onto E ;  we say that a star (q)c E 
is orthogonal projection of (ej} if Il (e,) = ai V i = 1 , 2 . .  . M. 

Finally, given a star ( a ; ]  we define the linear vector transformation T :  E + E as 
M M  T ( P ) = x  1 gf [ (a ioP)ak .  
i k  

Theorem 3.1. If { a j }  is the orthogonal projection of (e ,}  then P =  T ( P )  V P E  E. 

Proof: V P E  V P = . Z y  (PeT)e, where {e?} is the basis reciprocal to {e,). Since P E  E, 
P = I l ( P ) ,  so P = X y ( P ~ e f ) a ,  (sinceIl(e,)=a,), but e 7 = X y & e k  and 

i k  

Finally, since ex = ax + bk ,  with bk E E l  
Pae, = P ~ ( a k + b k ) = P ~ a k + P ~ b k = P ~ u k  

we have 

and this proves the theorem 

In order to prove the second part of the generalized Hadwiger theorem we first 
prove the following lemma which states that under an  adequate change of basis we 
can get a eutactic star {a,} from the star { a f ] .  

Lemma 3.1. Let B be an  M x M non-singular matrix such that for any PE E 
M M  

P = E  2: [ B ~ B ' ] k , ( P o a k ) a , .  
8 k  

Then the set (~2.):~ c E defined by aI. = Zr Bk,uk is a eutactic star. 

froox Given P E  E, by hypothesis 
M M  

P = x  2 [ B o E T ] k i ( P o a k ) a i  
i k  

M =x ( % ~ P ) ( . J  

then by the Hadwiger theorem (%] is a (normalized) eutactic star. 
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With this background we can state the converse of theorem 3.1. 

Theorem 3.2. If T ( P ) = I F  Xy gE,(Poak)a ,  is the identity in E then {a , }  is the 
orthogonal projection of { e , } .  

ProoJ Since g-' is positive definite, a well known theorem of linear algebra assures 
that there exists a non-singular M x M matrix B such that g-I = BB'. From the previous 

basis (C,}: ,  of V such that it decomposes (projects) uniquely as C,  = a, +a:€ EL. 
Consequently 

!emma Cs = z? Ek$k is a nnrma!izK! estactic star; coxseq-crit!g thc:e is an Kt:hanoima: 

Defining ei =X:f" B;'C, we have a basis {e(} for V such that e< = a , + L y  B;.'a: with 
Z!' B:.'aLe E L .  

~ _. I 

Finally 

4. Computational aspects and general strategy 

Theorems 3.1 and 3.2 above give necessary and sufficient conditions for the existence 
of a higher-dimensional lattice that projects onto a given star. In practice it is easier 
to work with the expressions given in the following theorem. 

Theorem 4.1. Let ( C ; )  be an orthonormal basis for E. Then 

if and only if P =  T ( P ) V P E E .  

Proof: G) Since Ch E E, we can write 
M M  

c h = x  g$(choak)ai  
i k  
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so 
M M  

S,, = Cjo C, = 1 2 &(C, aax)(C,o a i )  
i k  

conversely 3) 

P = IP = 11 S,,P,C, 

= I 2  sEj(Poak)ai.  
i k  

This completes the proof of the theorem 

Consequently, a given star can be projected from a hyperlattice having a metric 
tensor g, if and only if the star satisfies equation ( 5 ) .  A practical procedure for analysing 
a given situation is as follows. 

1.  Start by asking if projection is possible from a cubic (isometric) lattice of lattice 
parameter equal to unity. This amounts to using g, = S,, in equation ( 5 ) .  The criterion 
reduces to the original theorem by Hadwiger. 

2. If the star fails to satisfy the criterion in the original Hadwiger’s theorem, try a 
cubic hyperlattice of parameter A (so the star, though eutactic, is not normalized). Use 
in equation ( 5 )  g, = AS,, so if equation ( 5 )  can be solved for A (with A > 0 to assure 
positive definiteness) then the projection is possible. 

3. If the star cannot be projected from a cubic lattice, next try an orthohombic 
hyperlattice; set gu = AfS, and solve for A t  (here Ai  is the lattice parameter in the ith 
direction). As explained elsewhere (Arag6n et a1 1990), the system of equations can 
be solved using the generalized inverse (Mackay 1977) or singular-value decomposition 
techniques. The system may have a solution, which may or may not be unique, or the 
system may fail to have a solution. A solution with all Ai > 0 is required in order to 
get a matrix g that is positive definite. 

4. If the above steps fail, try then a general (hyper)triclinic lattice. That there is 
always a solution to the problem can be seen as follows. Let { a j } c  E be the given star. 
Assume (relabelling if necessary) that a, . . . a, is a basis for E. If b,,, . . . bM is a basis 
for E L , t h e n u = { a  ,... a,,, b., ,... b,}isabasisfor  V.Definep={a, ... a.,(a.+,+ 
b,,,) . . , ( a M  + b M ) }  = {c, . . . c M } .  Then p can be shown to be a basis for V, and is 
already in the form ci = ai + di where d, E EL. 

In the applications it is easier and clearer to write equation ( 5 )  in matrix form as 

Z = Ag*AT 

where I is the ( N  x N) identity matrix (with N = dim(€)) and the columns of A are 
the vectors M 
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5. Some applications 

5.1. Pentagonal case 

The Penrose pattern in two dimensions can be obtained by cutting a SD periodic 
icosahedral structure (Henley 1986) whose basis projects onto five vectors pointing to 
the vertices of a regular pentagon: 

a, = a(cos 2rrn/5, sin 2 r r n / 5 )  n=O,2 ,..., 4. 

This star is eutactic, so the lattice of the SD periodic structure can be hypercubic. 
Another possibility arises from the fact that the vectors a, ( n  = 1.2,. . . ,5) are 

rationally dependent and it is sufficient to consider a four-dimensional periodic struc- 
ture. Such a structure is obtained from the SD icosahedral structure as a 413 section 
perpendicular to the body-diagonal [ 11 11 11 direction; it is a dodecagonal one (Janssen 
1986) and its basis projects onto vectors pointing to four vertices of a regular pentagon. 
This star is non-eutactic and it can also he seen (applying the criteria outlined in 
section 4 above) that this star must necessarily he generated as a projection of a 
four-dimensional basis which spans a triclinic lattice. 

Following the path outlined in section 4 above, and by taking c, =cos 2?m/5, 
s, =sin 2 m / 5  and a = 1, we find that a possible basis in R4  that projects onto the star 
is given by 

e ,  = (LO, 0,O) 

e2=  (c,,  sir 0 , 0 )  

e ,  = ( c 2 .  s 2 ,  L O )  

e 4 = ( c 3 , s 3 , 0 ,  1) 

giving rise to a metric tensor: 

5.2. Decagonal phase 

In reciprocal space, the decagonal phase can be specified by the following set ofvectors: 

2" = 2 cos a i  a,=cosaz^+sinrrR"? n =O,. . . , 4  

where R is a rotation about the 2 axis by 21115. The vectors {zoo.} and { z o - a m ]  are 
the lower and upper edges of a pentagonal hipyramid (Ho 1986): This star is non- 
eutactic hut step 3 in section 4 shows that it can be obtained as a projection of a basis 
which generates an orthorhombic (reciprocal) lattice, as i s  well known (Mandal and 
Lele 1989, Arag6n er a /  1990). 

An interesting exercise consists in discarding the zu vector (which can he obtained 
as a rational combination of the five vectors a,,), and obtaining a star a,,, n = 0, .  . . ,4,  
which, according to our criteria, cannot he projected either from a cubic or an 
Orthorhombic basis. 
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As in the previous example, one can easily find a basis for the lattice in R’ as 

e ,  = (se, 0, c,, 0,” 

e2=( -c , s , , s , s , ,  c,,O,O) 
e, = ( c ~ ,  -SA, c,, 0,O) 
e ,= ( -c , s , , s , s , , c , , l ,O)  
e5=(c4s , , - sds , , cm,0 ,  1) 

where c. =cos 27rn f 5 ,  s. =sin 2 ~ 1 1 1 5  ( n  = 0, . . . , 4  or a). The associated metric tensor 
is I g=[ 2 

1 -e,s:+e: e*s‘ + e’, -e,s:+ e‘ e,s‘,+e’ 

1 -s’ ,(e,c,+s,s,)+r’,  s:(c,c,+s,s,)+c’, -c:(c,c,+s,s,)+c’ 

I -&c*c,+ s*s,) + e’, e’,(c,c, + Si&) + c’ 
symmetrical 2 -si(e,e,+ s,s,)+e: 

It should be remarked that the procedure used in these examples provides a solution 
but it is not necessarily the ‘best’ nor the one that displays the symmetry of the lattice 
in V (Janssen 1986). 

6. Discussion 

A very general result in the theory of quasiperiodic structures states that a quasiperiodic 
function can be seen as a cut through a periodic function in a higher-dimensional 
space (Bak 1985). There are indications in the experimental literature in the sense that 
this approach must be used for a full description of the materials (de Boissieu el  a1 
1990) rather than simply using less general approaches, such as cut and projection, 
grid methods or straight decoration of Penrose tiles. 

On the other hand there are quasiperiodic structures that, unlike the icosahedral 
quasicrystals, cannot be seen as cuts from hypercubic lattices (although, strictly speak- 
ing, one can always arrange things so as to use only isometric lattices; see Bak and 
Goldman 1988). It is having such cases in mind that the Hadwiger theorem concerning 
the projectability of lattices onto given stars was generalized. Presumably new phases 
that call for various non-isometric lattices will be discovered in the near future and 
the results obtained here might be useful for their characterization in the ‘cut’ scheme. 

Finally we would like to point out that although this work was done having in 
mind quasiperiodic functions, it might be useful in other contexts. For instance Elser 
(1989) has shown that the random quasicrystals can be thought of as packings of 
clusters of atoms (with suitable symmetry) whose centres are the projections of a subset 
of a lattice in the higher-dimensional space V. In this case the formalism presented 
here retains is usefulness since many of the properties of the quasicrystals (mostly 
their diffraction properties) depend on the behaviour of the subset of the lattice (the 
hypersurface). 
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